个性化阅读
专注于IT技术分析

Latex偏导

本文概述

衍生物

数学中的导数表示变化率。偏导数定义为一种保持变量常数的方法。

\ partial命令用于在任何方程式中写偏导数。

导数有不同的顺序。

让我们使用Latex代码编写导数的顺序。我们可以考虑将输出图像更好地理解。

代码如下:

\documentclass[12pt]{article} 
\usepackage{mathtools}
\usepackage{xfrac}
\begin{document}

\[
First \; order \; derivative = f'(x) % the \; command is used for spacing
\]
\[
Second \; order \; derivative = f''(x) % here, we have used separate environments to display the text in different lines
\]
\[
Third \; order \; derivative = f'''(x)
\]
\[
\vdots
\]
\[
Kth \; order \; derivative = f^{k}(x)
\]

\end{document}

输出:

Latex偏导

让我们使用上面的导数写方程。该方程式包括分数和极限部分。

下面给出了该示例的代码:

\documentclass[12pt]{article} 
\usepackage{mathtools}
\usepackage{xfrac}
\begin{document}

\[
f'(x) = \lim\limits_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h}
\]

\end{document}

输出:

Latex偏导数1

偏导数

偏导数也有不同的阶数。

让我们使用Latex代码编写导数的顺序。我们可以考虑将输出图像更好地理解。

代码如下:

\documentclass[12pt]{article} 
\usepackage{mathtools}
\usepackage{xfrac}
\begin{document}

\[
First \; order \; partial \; derivative = \frac{\partial f}{\partial x} % the \; command is used for spacing
\]
\[
Second \; order \; partial \; derivative = \frac{\partial^2 f}{\partial x^2} % here, we have used separate environments to display the text in different lines
\]
\[
Third \; order \; partial \; derivative = \frac{\partial^3 f}{\partial x^3}
\]
\[
\vdots
\]
\[
Kth \; order \; partial \; derivative = \frac{\partial^k f}{\partial x^k}
\]

\end{document}

输出:

Latex偏导数2

我们来看一个使用偏导数编写方程的示例。

下面给出了该示例的代码:

\documentclass[12pt]{article} 
\usepackage{mathtools}
\usepackage{xfrac}
\begin{document}

\[
\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}
\]

\end{document}

输出:

Latex偏导3

混合偏导数

我们还可以在单​​个方程式中插入混合的偏导数。

让我们看一个例子。

下面给出了该示例的代码:

\documentclass[12pt]{article} 
\usepackage{mathtools}
\usepackage{xfrac}
\begin{document}

\[
F(x, y, z) = \frac{\partial^3 F}{\partial x \partial y \partial z} 
\]

\end{document}

输出:

Latex偏导数4

我们可以根据需要修改方程和参数。


差异化

\ diff命令用于显示区分符号。

要实现差异化, 我们需要使用diffcoeff软件包。

该包写为:

\usepackage{diffcoeff}

让我们考虑一些差异化的例子。

第一个示例是显示一阶微分方程。

代码如下

\documentclass[12pt]{article} 
\usepackage{mathtools}
\usepackage{diffcoeff}
\begin{document}

\[
\diff[1]yx 3x = 3
\]
\[
\diff{y}{x}2x = 2
\]
 % we can use any of the two methods to write the first-order differential equation
 
\end{document}

输出:

Latex偏导5

第二个示例是显示二阶微分方程。

代码如下:

\documentclass[12pt]{article} 
\usepackage{mathtools}
\usepackage{diffcoeff}
\begin{document}

\[
\diff[2]yx 3x^2 = 6x
\]
 
\end{document}

输出:

Latex偏导6

下面给出了第三个示例的代码:

\documentclass[12pt]{article} 
\usepackage{mathtools}
\usepackage{diffcoeff}
\begin{document}

\[
\diff{\cos x}x = - \sin x
\]
\[
\diff[1]yx (2x^2 + 4x + 3) = 4x + 4
\]
 
\end{document}

输出:

Latex偏导数7

与偏导数的微分

\ diffp命令用于显示带有偏导数的微分符号。

让我们考虑一些偏导数微分的例子。

第一个示例是显示一阶微分偏微分方程。

代码如下:

\documentclass[12pt]{article} 
\usepackage{mathtools}
\usepackage{diffcoeff}
\begin{document}

\[
\diffp{u}{t} = \diffp{u}{x} + \diffp{u}{y}
\]
 
\end{document}

输出:

Latex偏导数8

第二个例子是显示二阶微分偏微分方程。

代码如下:

\documentclass[12pt]{article} 
\usepackage{mathtools}
\usepackage{diffcoeff}
\begin{document}

\[
\diffp[2]ut = \diffp[2]ux + \diffp[2]uy
\]
 
\end{document}

输出:

Latex偏导数9

第三个示例将显示保持常数值的偏导数。

它还将包括其他示例, 以阐明概念。

下面给出了该示例的代码:

\documentclass[12pt]{article} 
\usepackage{mathtools}
\usepackage{diffcoeff}
\begin{document}

\[
\diffp {G(x, y)}x[(1, 1)]
\]
\[
\diffp ST[D]
\]
\[
\diffp ut[]
\]
\[
\diffp[1, 3]F{x, y, z}
\]
\[
\diffp[2, 3, 2]F{x, y, z} % the power of the numerator is the sum of the powers of variables of the denominator.
\]
 
\end{document}

输出:

Latex偏导数10

赞(1)
未经允许不得转载:srcmini » Latex偏导

相关推荐

评论 抢沙发

评论前必须登录!