边缘检测是识别图像中对象边界的术语。我们将学习使用Canny边缘检测技术的边缘检测。坎尼边缘检测的语法为:
edges = cv2.Canny('/path/to/img', minVal, maxVal, apertureSize, L2gradient)
参数-
- / path / to / img:图片的文件路径(必填)
- minVal:最小强度梯度(必需)
- maxVal:最大强度梯度(必需)
- 孔径:这是可选参数。
- L2gradient:其默认值是false, 如果值是true, 则Canny()使用计算量更大的等式来检测边缘, 从而以资源为代价提供更高的准确性。
范例:1
import cv2
img = cv2.imread(r'C:\Users\DEVANSH SHARMA\cat_16x9.jpg')
edges = cv2.Canny(img, 100, 200)
cv2.imshow("Edge Detected Image", edges)
cv2.imshow("Original Image", img)
cv2.waitKey(0) # waits until a key is pressed
cv2.destroyAllWindows() # destroys the window showing image
输出
示例:实时边缘检测
# import libraries of python OpenCV
import cv2
# import Numpy by alias name np
import numpy as np
# capture frames from a camera
cap = cv2.VideoCapture(0)
# loop runs if capturing has been initialized
while (1):
# reads frames from a camera
ret, frame = cap.read()
# converting BGR to HSV
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# define range of red color in HSV
lower_red = np.array([30, 150, 50])
upper_red = np.array([255, 255, 180])
# create a red HSV colour boundary and
# threshold HSV image
mask = cv2.inRange(hsv, lower_red, upper_red)
# Bitwise-AND mask and original image
res = cv2.bitwise_and(frame, frame, mask=mask)
# Display an original image
cv2.imshow('Original', frame)
# discovers edges in the input image image and
# marks them in the output map edges
edges = cv2.Canny(frame, 100, 200)
# Display edges in a frame
cv2.imshow('Edges', edges)
# Wait for Esc key to stop
k = cv2.waitKey(5) & 0xFF
if k == 27:
break
# Close the window
cap.release()
# De-allocate any associated memory usage
cv2.destroyAllWindows()
输出
评论前必须登录!
注册