本文概述
我们拥有所有三个图像, 现在, 我们可以执行优化过程。要执行优化过程, 我们必须执行以下步骤:
步骤1:
第一步, 我们定义一些基本参数, 这些参数可以帮助我们直观地了解培训过程, 并有助于我们简化培训过程。第一个参数每次都向我们显示我们的目标图像, 以便我们可以检查优化过程。我们用目标图像定义Adam优化器, 并设置目标学习率。最后但并非最不重要的一点是, 我们定义了培训过程应采取的优化步骤的数量。
我们需要在结果和时间效率之间取得平衡, 因为培训过程可能需要很长时间才能完成。因此, 我们将定义步骤, 在本例中, 我们将步骤限制为2100。
show_every=300
optimizer=optim.Adam([target], lr=0.003)
steps=2100
第2步:
现在, 我们实现了一些代码行用于数据可视化。我们定义了一个图像阵列, 它将在整个训练过程中存储目标图像。训练过程结束后, 我们可以从这些图像中创建一个视频, 以直观了解样式和内容图像如何组合以优化目标图像。我们将解开目标图像的形状。
height, width, channels=im_convert(target).shape
image_array=np.empty(shape=(300, height, width, channels))
我们将定义一个捕获帧, 这有助于我们每次捕获一个帧。最后, 我们将定义一个计数器变量, 该变量将跟踪数组索引。
capture_frame=steps/300
counter=0
优化的迭代过程
#Defining a loop statement from 1 to steps+1
for ii in range(1, steps+1): #To ensure that our loop runs for the defined number of steps
# Extracting feature for our current target image
target_features=get_features(target, vgg)
#Calculating the content loss for the iteration
content_loss=torch.mean((target_features['conv4_2']content_features['conv4_2'])**2)
#Initializing style loss
style_loss=0
#The style loss is the result of a combine loss from five different layer within our model.
#For this reason we iterate through the five style features to get the error at each layer.
for layer in style_weights:
#Collecting the target feature for the specific layer from the target feature variable
target_feature=target_features[layer]
#Applying gram matrix function to our target feature
target_gram=gram_matrix(target_feature)
#Getting style_gram value for our style image from the style grams variable
style_gram=style_grams[layer]
#Calculating the layer style loss as content loss
layer_style_loss=style_weights[layer]*torch.mean((target_gram-style_gram)**2)
#Obtaining feature dimensions
_, d, h, w=target_feature.shape
#Calculating total style loss
style_loss += layer_style_loss/(d*h*w)
#Calculating total loss
total_loss=content_weight*content_loss+style_weight*style_loss
#Using the optimizer to update parameters within our target image
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
#Process for visualization throughout the training process
#Comparing the iteration variable with our show every
if ii % show_every==0:
#Printing total loss
print('Total loss:', total_loss.item())
#Printing the iteration
print('Iteration', ii)
#Printting the target images
plt.imshow(im_convert(target))
#Removing the axis on the image
plt.axis('off')
# Showing image
plt.show()
#Comparing the iteration variable with our capture frame variable
if ii%capture_frame==0: # Capturing a frame at every 700 iteration
#Storing the target image into the image_array
image_array[counter]=im_convert(target)
# Increment in the counter variable
counter=counter+1
当我们运行代码时, 它将为我们提供预期的输出:
绘制内容, 样式和最终目标图像
#Making a grid arrangement with a single row and three columns for our three images
fig, (ax1, ax2, ax3)=plt.subplots(1, 3, figsize=(20, 10))
#Plotting content image
ax1.imshow(im_convert(content))
ax1.axis('off')
#Plotting style image
ax2.imshow(im_convert(style))
ax2.axis('off')
#Plotting target image
ax3.imshow(im_convert(target))
ax3.axis('off')
完整的代码
#Required Libraries
import torch
import torch.optim as optim
from torchvision import transforms, models
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
#Creating Model
vgg=models.vgg19(pretrained=True).features
for param in vgg.parameters():
param.requires_grad_(False)
#Add model to device
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
vgg.to(device)
#Load Iamge
def load_image(img_path, max_size=400, shape=None):
image=Image.open(img_path).convert('RGB')
if max(image.size)>max_size:
size=max_size
else:
size=max(image.size)
if shape is not None:
size=shape
in_transform=transforms.Compose([
transforms.Resize(size), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
image=in_transform(image).unsqueeze(0)
return image
content=load_image('ab.jpg').to(device)
style=load_image('abc.jpg', shape=content.shape[-2:]).to(device)
#Image Conversion
def im_convert(tensor):
image=tensor.cpu().clone().detach().numpy()
image=image.squeeze()
image=image.transpose(1, 2, 0)
image=image*np.array((0.5, 0.5, 0.5))+np.array((0.5, 0.5, 0.5))
image=image.clip(0, 1)
return image
#Plotting Images
fig, (ax1, ax2)=plt.subplots(1, 2, figsize=(20, 10))
ax1.imshow(im_convert(content))
ax1.axis('off')
ax2.imshow(im_convert(style))
ax2.axis('off')
#Getting Features
def get_features(image, model):
layers={'0':'conv1_1', '5':'conv2_1', '10':'conv3_1', '19':'conv4_1', '21':'conv4_2', '28':'conv5_1', }
features={}
for name, layer in model._modules.items():
image=layer(image)
if name in layers:
features[layers[name]]=image
return features
#Making content and style features
content_features=get_features(content, vgg)
style_features=get_features(style, vgg)
#Creating gram matrix
def gram_matrix(tensor):
_, d, h, w=tensor.size()
tensor=tensor.view(d, h*w)
gram=torch.mm(tensor, tensor.t())
return gram
#Creating style grams
style_grams={layer:gram_matrix(style_features[layer]) for layer in style_features}
#Initializing style weights
style_weights={'conv1_1':1., 'conv2_1':0.75, 'conv3_1':0.2, 'conv4_1':0.2, 'conv5_1':0.2}
content_weight=1
style_weight=1e6
target=content.clone().requires_grad_(True).to(device)
#Performing optimization
show_every=300
optimizer=optim.Adam([target], lr=0.003)
steps=2100
height, width, channels=im_convert(target).shape
image_array=np.empty(shape=(300, height, width, channels))
capture_frame=steps/300
counter=0
for ii in range(1, steps+1):
target_features=get_features(target, vgg)
content_loss=torch.mean((target_features['conv4_2']-content_features['conv4_2'])**2)
style_loss=0
for layer in style_weights:
target_feature=target_features[layer]
target_gram=gram_matrix(target_feature)
style_gram=style_grams[layer]
layer_style_loss=style_weights[layer]*torch.mean((target_gram-style_gram)**2)
_, d, h, w=target_feature.shape
style_loss += layer_style_loss/(d*h*w)
total_loss=content_weight*content_loss+style_weight*style_loss
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
#Plotting output images
if ii % show_every==0:
print('Total loss:', total_loss.item())
print('Iteration', ii)
plt.imshow(im_convert(target))
plt.axis('off')
plt.show()
if ii%capture_frame==0:
image_array[counter]=im_convert(target)
counter=counter+1
#Plotting content, style and target images
fig, (ax1, ax2, ax3)=plt.subplots(1, 3, figsize=(20, 10))
ax1.imshow(im_convert(content))
ax1.axis('off')
ax2.imshow(im_convert(style))
ax2.axis('off')
ax3.imshow(im_convert(target))
ax3.axis('off')
输出
评论前必须登录!
注册