本文概述
考虑以下简单两个数相乘的方法。
// A Simple solution that causes overflow when
// value of (a % mod) * (b % mod) becomes more than
// maximum value of long long int
#define ll long long
ll multiply(ll a, ll b, ll mod)
{
return ((a % mod) * (b % mod)) % mod;
}
当乘法不会导致溢出时, 上述功能可以正常工作。但是, 如果输入数字的乘积结果大于最大限制。
例如, 当mod = 10时, 上述方法将失败11, a = 9223372036854775807(最大long long int)和b = 9223372036854775807(最大long long int)。请注意, 可能会有较小的值可能会失败。可以有更多的较小值的示例。实际上, 任何与之相乘可以导致大于最大值的值的集合。
如何避免溢出?
我们可以递归乘法来克服溢出的困难。要乘以a * b, 请先计算a * b / 2, 然后再相加两次。为了计算a * b / 2, 请计算a * b / 4, 依此类推(类似于
log n求幂算法
)。
// To compute (a * b) % mod
multiply(a, b, mod)
1) ll res = 0; // Initialize result
2) a = a % mod.
3) While (b > 0)
a) If b is odd, then add 'a' to result.
res = (res + a) % mod
b) Multiply 'a' with 2
a = (a * 2) % mod
c) Divide 'b' by 2
b = b/2
4) Return res
下面是实现。
C ++
// C++ program for modular multiplication without
// any overflow
#include<iostream>
using namespace std;
typedef long long int ll;
// To compute (a * b) % mod
ll mulmod(ll a, ll b, ll mod)
{
ll res = 0; // Initialize result
a = a % mod;
while (b > 0)
{
// If b is odd, add 'a' to result
if (b % 2 == 1)
res = (res + a) % mod;
// Multiply 'a' with 2
a = (a * 2) % mod;
// Divide b by 2
b /= 2;
}
// Return result
return res % mod;
}
// Driver program
int main()
{
ll a = 9223372036854775807, b = 9223372036854775807;
cout << mulmod(a, b, 100000000000);
return 0;
}
Java
// Java program for modular multiplication
// without any overflow
class GFG
{
// To compute (a * b) % mod
static long mulmod( long a, long b, long mod)
{
long res = 0 ; // Initialize result
a = a % mod;
while (b > 0 )
{
// If b is odd, add 'a' to result
if (b % 2 == 1 )
{
res = (res + a) % mod;
}
// Multiply 'a' with 2
a = (a * 2 ) % mod;
// Divide b by 2
b /= 2 ;
}
// Return result
return res % mod;
}
// Driver code
public static void main(String[] args)
{
long a = 9223372036854775807L, b = 9223372036854775807L;
System.out.println(mulmod(a, b, 100000000000L));
}
}
// This code is contributed by Rajput-JI
Python3
# Python3 program for modular multiplication
# without any overflow
# To compute (a * b) % mod
def mulmod(a, b, mod):
res = 0 ; # Initialize result
a = a % mod;
while (b > 0 ):
# If b is odd, add 'a' to result
if (b % 2 = = 1 ):
res = (res + a) % mod;
# Multiply 'a' with 2
a = (a * 2 ) % mod;
# Divide b by 2
b / / = 2 ;
# Return result
return res % mod;
# Driver Code
a = 9223372036854775807 ;
b = 9223372036854775807 ;
print (mulmod(a, b, 100000000000 ));
# This code is contributed by mits
C#
// C# program for modular multiplication
// without any overflow
using System;
class GFG
{
// To compute (a * b) % mod
static long mulmod( long a, long b, long mod)
{
long res = 0; // Initialize result
a = a % mod;
while (b > 0)
{
// If b is odd, add 'a' to result
if (b % 2 == 1)
{
res = (res + a) % mod;
}
// Multiply 'a' with 2
a = (a * 2) % mod;
// Divide b by 2
b /= 2;
}
// Return result
return res % mod;
}
// Driver code
public static void Main(String[] args)
{
long a = 9223372036854775807L, b = 9223372036854775807L;
Console.WriteLine(mulmod(a, b, 100000000000L));
}
}
// This code is contributed by 29AjayKumar
输出如下:
84232501249
感谢Utkarsh Trivedi提出上述解决方案。
如果发现任何不正确的地方, 或者想分享有关上述主题的更多信息, 请发表评论。
评论前必须登录!
注册