本文概述
给定两个自然数n和m。任务是找出大于或等于m的数相加得到n的几种方法。
例子:
Input : n = 3, m = 1
Output : 3
Following are three different ways
to get sum n such that each term is
greater than or equal to m
1 + 1 + 1, 1 + 2, 3
Input : n = 2, m = 1
Output : 2
Two ways are 1 + 1 and 2
这个想法是通过定义2D矩阵(例如dp [] [])来使用动态规划。dp [i] [j]使用大于或等于j的数字定义获取和i的方式的数量。因此dp [i] [j]可定义为:
如果i <j, 则dp [i] [j] = 0, 因为我们无法使用大于或等于j的数字来实现i的较小和。
如果i = j, 则dp [i] [j] = 1, 因为只有一种方法可以使用等于j的数字i来显示和i。
否则dp [i] [j] = dp [i] [j + 1] + dp [ij] [j], 因为使用大于或等于j的数字
获得和i等于获得…的和。 i使用大于或等于j + 1的数字, 并使用大于或等于j的数字获得ij的总和。
以下是此方法的实现:
C ++
//CPP Program to find number of ways to
//which numbers that are greater than
//given number can be added to get sum.
#include <bits/stdc++.h>
#define MAX 100
using namespace std;
//Return number of ways to which numbers
//that are greater than given number can
//be added to get sum.
int numberofways( int n, int m)
{
int dp[n+2][n+2];
memset (dp, 0, sizeof (dp));
dp[0][n + 1] = 1;
//Filling the table. k is for numbers
//greater than or equal that are allowed.
for ( int k = n; k>= m; k--) {
//i is for sum
for ( int i = 0; i <= n; i++) {
//initializing dp[i][k] to number
//ways to get sum using numbers
//greater than or equal k+1
dp[i][k] = dp[i][k + 1];
//if i> k
if (i - k>= 0)
dp[i][k] = (dp[i][k] + dp[i - k][k]);
}
}
return dp[n][m];
}
//Driver Program
int main()
{
int n = 3, m = 1;
cout <<numberofways(n, m) <<endl;
return 0;
}
Java
//Java Program to find number of ways to
//which numbers that are greater than
//given number can be added to get sum.
import java.io.*;
class GFG {
//Return number of ways to which numbers
//that are greater than given number can
//be added to get sum.
static int numberofways( int n, int m)
{
int dp[][]= new int [n+ 2 ][n+ 2 ];
dp[ 0 ][n + 1 ] = 1 ;
//Filling the table. k is for numbers
//greater than or equal that are allowed.
for ( int k = n; k>= m; k--) {
//i is for sum
for ( int i = 0 ; i <= n; i++) {
//initializing dp[i][k] to number
//ways to get sum using numbers
//greater than or equal k+1
dp[i][k] = dp[i][k + 1 ];
//if i> k
if (i - k>= 0 )
dp[i][k] = (dp[i][k] + dp[i - k][k]);
}
}
return dp[n][m];
}
//Driver Program
public static void main(String args[])
{
int n = 3 , m = 1 ;
System.out.println(numberofways(n, m));
}
}
/*This code is contributed by Nikita tiwari.*/
Python3
# Python3 Program to find number of ways to
# which numbers that are greater than
# given number can be added to get sum.
MAX = 100
import numpy as np
# Return number of ways to which numbers
# that are greater than given number can
# be added to get sum.
def numberofways(n, m) :
dp = np.zeros((n + 2 , n + 2 ))
dp[ 0 ][n + 1 ] = 1
# Filling the table. k is for numbers
# greater than or equal that are allowed.
for k in range (n, m - 1 , - 1 ) :
# i is for sum
for i in range (n + 1 ) :
# initializing dp[i][k] to number
# ways to get sum using numbers
# greater than or equal k+1
dp[i][k] = dp[i][k + 1 ]
# if i> k
if (i - k> = 0 ) :
dp[i][k] = (dp[i][k] + dp[i - k][k])
return dp[n][m]
# Driver Code
if __name__ = = "__main__" :
n, m = 3 , 1
print (numberofways(n, m))
# This code is contributed by Ryuga
C#
//C# program to find number of ways to
//which numbers that are greater than
//given number can be added to get sum.
using System;
class GFG {
//Return number of ways to which numbers
//that are greater than given number can
//be added to get sum.
static int numberofways( int n, int m)
{
int [, ] dp = new int [n + 2, n + 2];
dp[0, n + 1] = 1;
//Filling the table. k is for numbers
//greater than or equal that are allowed.
for ( int k = n; k>= m; k--) {
//i is for sum
for ( int i = 0; i <= n; i++) {
//initializing dp[i][k] to number
//ways to get sum using numbers
//greater than or equal k+1
dp[i, k] = dp[i, k + 1];
//if i> k
if (i - k>= 0)
dp[i, k] = (dp[i, k] + dp[i - k, k]);
}
}
return dp[n, m];
}
//Driver Program
public static void Main()
{
int n = 3, m = 1;
Console.WriteLine(numberofways(n, m));
}
}
/*This code is contributed by vt_m.*/
的PHP
<?php
//PHP Program to find number of ways to
//which numbers that are greater than
//given number can be added to get sum.
$MAX = 100;
//Return number of ways to which numbers
//that are greater than given number can
//be added to get sum.
function numberofways( $n , $m )
{
global $MAX ;
$dp = array_fill (0, $n + 2, array_fill (0, $n +2, NULL));
$dp [0][ $n + 1] = 1;
//Filling the table. k is for numbers
//greater than or equal that are allowed.
for ( $k = $n ; $k>= $m ; $k --)
{
//i is for sum
for ( $i = 0; $i <= $n ; $i ++)
{
//initializing dp[i][k] to number
//ways to get sum using numbers
//greater than or equal k+1
$dp [ $i ][ $k ] = $dp [ $i ][ $k + 1];
//if i> k
if ( $i - $k>= 0)
$dp [ $i ][ $k ] = ( $dp [ $i ][ $k ] + $dp [ $i - $k ][ $k ]);
}
}
return $dp [ $n ][ $m ];
}
//Driver Program
$n = 3;
$m = 1;
echo numberofways( $n , $m ) ;
return 0;
//This code is contributed by ChitraNayal
?>
输出如下:
3
评论前必须登录!
注册