PyTorch神经网络和深度学习基本介绍
本文概述 神经网络和深度学习神经网络 神经网络的优势 神经网络的缺点 深度学习是机器学习中使用的一组算法。它是基于人工神经网络的机器学习方法的一部分。学习可以是有监督的, 无监督的或半监督的。 深度学习架构(即深度神经网络, 递归神经网络和...
本文概述 神经网络和深度学习神经网络 神经网络的优势 神经网络的缺点 深度学习是机器学习中使用的一组算法。它是基于人工神经网络的机器学习方法的一部分。学习可以是有监督的, 无监督的或半监督的。 深度学习架构(即深度神经网络, 递归神经网络和...
反向传播是神经网络的重要概念之一。我们的任务是最好地对数据进行分类。为此, 我们必须更新参数和偏差的权重, 但是如何在深度神经网络中做到这一点呢?在线性回归模型中, 我们使用梯度下降来优化参数。同样, 在这里, 我们也使用使用反向传播的梯度...
通过将两个线性模型与一些方程, 权重, 偏差和S形函数相结合, 我们发现了一个非线性模型。让我们开始更好的说明, 并了解神经网络和深度神经网络的体系结构。 让我们看一个例子, 以更好地理解和说明。 假设有一个线性模型, 其线表示为-4...
我们使用了深度神经网络对无尽的数据集进行分类, 结果发现它无法最好地对数据进行分类。当使用深度神经网络时, 模型的准确性不足, 模型可以改进。借助卷积神经网络将实现这一改进。让我们开始实现用于图像识别的卷积神经网络。 有以下步骤来实现CNN...
本文概述 卷积层 大步前进 填充 池化层 全连接层 卷积神经网络是神经网络中进行图像分类和图像识别的主要类别之一。场景标记, 物体检测和面部识别等是卷积神经网络广泛使用的一些领域。 CNN将图像作为输入, 将其分类并按特定类别(例如狗, 猫...